TL7757 SUPPLY-VOLTAGE SUPERVISOR AND PRECISION VOLTAGE DETECTOR SLVS041H – SEPTEMBER 1991 – REVISED AUGUST 2002

- Power-On Reset Generator
- Automatic Reset Generation After Voltage Drop
- Low Standby Current . . . 20 μA
- RESET Output Defined When V_{CC} Exceeds 1 V
- Precision Threshold Voltage 4.55 V ±120 mV
- High Output Sink Capability . . . 20 mA
- Comparator Hysteresis Prevents Erratic Resets

description/ordering information

The TL7757 is a supply-voltage supervisor designed for use in microcomputer and microprocessor systems. The supervisor monitors the supply voltage for undervoltage conditions. During power up, when the supply voltage, V_{CC} , attains a value approaching 1 V, the RESET output becomes active (low) to prevent undefined operation. If the supply voltage drops below threshold voltage level (V_{IT-}), the RESET output goes to the active (low) level until the supply undervoltage fault condition is eliminated.

GND is in electrical contact with the tab.

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
		Tube of 75	TL7757CD	77570
	3010 (D)	Reel of 2500	TL7757CDR	11510
0°C to 70°C	SOT (PK)	Reel of 1000	TL7757CPK	T7
	TO-92 (LP)	Bulk of 1000	TL7757CLP	
		Reel of 2000	TL7757CLPR	11/15/0
		Tube of 75	TL7757ID	77571
	3010 (D)	Reel of 2500	TL7757IDR	77571
−40°C to 85°C	SOT (PK)	Reel of 1000	TL7757IPK	71
		Bulk of 1000	TL7757ILP	TI 77571
	10-32 (LI)	Reel of 2000	TL7757ILPR	

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2002, Texas Instruments Incorporated

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

This datasheet has been downloaded from http://www.digchip.com at this page

TL7757 SUPPLY-VOLTAGE SUPERVISOR AND PRECISION VOLTAGE DETECTOR

SLVS041H - SEPTEMBER 1991 - REVISED AUGUST 2002

equivalent schematic

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

Supply voltage range, V _{CC} (see Note 1)		-0.3 V to 20 V
Off-state output voltage range (see Note 1)		-0.3 V to 20 V
Output current, I _O		30 mA
Package thermal impedance, θ_{JA} (see Notes 2 and 3):	: D package	97°C/W
	LP package	156°C/W
	PK package	52°C/W
Lead temperature 1,6 mm (1/16 inch) from case for 10	seconds	260°C
Storage temperature range, T _{stg}		–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values are with respect to network terminal ground.
 - 2. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
 - 3. The package thermal impedance is calculated in accordance with JESD 51-7.

TL7757 SUPPLY-VOLTAGE SUPERVISOR AND PRECISION VOLTAGE DETECTOR SLVS041H - SEPTEMBER 1991 - REVISED AUGUST 2002

recommended operating conditions

		MIN	MAX	UNIT
Supply voltage, V _{CC}		1	7	V
High-level output voltage, V _{OH}			15	V
Low-level output current, IOL			20	mA
Operating free air temperature. The	TL7757C	0	70	ŝ
	TL7757I	-40	7 15 20 70 85	C

electrical characteristics at specified free-air temperature

	DADAMETED	TEST CONDITIONS	т.	Т	L7757C		
	FARAMETER	TEST CONDITIONS	ΥA	MIN	TYP	MAX	UNIT
V	Negative going input threshold voltage at Veg		25°C	4.43	4.55	4.67	V
VII –	Negative-going input threshold voltage at vCC		0°C to 70°C	T MIN 4.43 4.4 40 30		4.7	V
· +			25°C	40	50	60	m\/
Vhys'			0°C to 70°C	30		70	mv
Ve		a = 20 m $ a = 4.2 V$	25°C		0.4	0.8	V
VOL	Low-level output voltage	OL = 20 MA, VCC = 4.3 V	0°C to 70°C			0.8	v
	High lovel output ourrent	V _{CC} = 7 V, V _{OH} = 15 V,	25°C			1	
ЮН	High-level output current	See Figure 1	0°C to 70°C			1	μΑ
v +	Dower up react voltage	RL = 2.2 kΩ,	25°C		0.8	1	V
vres+	Power-up leset voltage	V_{CC}^{-} slew rate $\leq 5 V/\mu s$	0°C to 70°C			1.2	v
		Vec - 42V	25°C		1400	2000	
ICC	Supply current	VCC = 4.3 V	0°C to 70°C			2000	μA
		V _{CC} = 5.5 V	0°C to 70°C	MIN TYP 4.43 4.55 4.4 40 50 30 0.4 0.4 0.4 1400 1400		40	

[†] This is the difference between positive-going input threshold voltage, V_{IT+}, and negative-going input threshold voltage, V_{IT-}. [‡] This is the lowest voltage at which RESET becomes active.

switching characteristics at specified free-air temperature

		TEST CONDITIONS	T.	TL7757C			
	FARAMETER	TEST CONDITIONS	'A	MIN	TYP	MAX	UNIT
	Propagation delay time, low-to-high-level	V_{CC} slew rate $\leq 5 V/\mu s$,	25°C		3.4	5	
PLH	output	See Figures 2 and 3	0°C to 70°C			5	μs
	Propagation delay time, high-to-low-level	Soo Figuroo 2 and 2	25°C		2	5	
PHL	output	See Figures 2 and 5	0°C to 70°C			5	μs
	Pice time	V _{CC} slew rate \leq 5 V/µs,	25°C		0.4	1	
۲	Rise une	See Figures 2 and 3	0°C to 70°C			1	μs
+.		Soo Figuroo 2 and 2	25°C		0.05	1	
Ч	Fairunie	See Figures 2 and 5	0°C to 70°C			1	μs
+	Minimum pulse duration at V_{CC} for output		25°C			5	
w(min)	response		0°C to 70°C			5	μδ

TL7757 SUPPLY-VOLTAGE SUPERVISOR AND PRECISION VOLTAGE DETECTOR

SLVS041H - SEPTEMBER 1991 - REVISED AUGUST 2002

electrical characteristics at specified free-air temperature

	DADAMETED	TEST CONDITIONS	T.	1	[L7757]		
	PARAMETER	TEST CONDITIONS	'A	MIN	TYP	MAX	UNIT
V	Negative going input threshold voltage at Vee		25°C	4.43	4.55	4.67	V
VII –	Negative-going input threshold voltage at VCC		–40°C to 85°C	4.4		4.7	v
· +			25°C	40	50	60	m\/
^V hys ¹	Hystelesis at VCC		–40°C to 85°C	30		70	mv
Val		1a: 20 m/ 1/aa (2)/	25°C		0.4	0.8	V
VOL	Low-level output voltage	IOL = 20 mA, VCC = 4.3 V	–40°C to 85°C			0.8	v
1	Lich lovel output ourrent	V _{CC} = 7 V, V _{OH} = 15 V,	25°C			1	A
ЮН	High-level output current	See Figure 1	–40°C to 85°C			1	μΑ
v +	Power up react voltage	R _L = 2.2 kΩ,	25°C		0.8	1	V
vres+	Power-up reset voltage	V_{CC}^{-} slew rate $\leq 5 V/\mu s$	–40°C to 85°C			1.2	v
			25°C		1400	2000	
ICC	Supply current	$v_{CC} = 4.3 v$	–40°C to 85°C			2100	μA
		V _{CC} = 5.5 V	-40°C to 85°C			40	

[†] This is the difference between positive-going input threshold voltage, V_{IT+}, and negative-going input threshold voltage, V_{IT-}. [‡] This is the lowest voltage at which RESET becomes active.

switching characteristics at specified free-air temperature

				TL7757I			
	FARAMETER	TEST CONDITIONS	'A	MIN	TYP	MAX	UNIT
to	Propagation dolay time, low to high loyal output	V _{CC} slew rate \leq 5 V/µs,	25°C		3.4	5	
PLH		See Figures 2 and 3	–40°C to 85°C			5	μs
	Propagation dology time, high to low logal output	Soo Figuroo 2 and 2	25°C		2	5	
PHL	Propagation delay time, high-to-low-level output	See Figures 2 and 3 -4	–40°C to 85°C			5	μs
	Pico timo	V_{CC} slew rate $\leq 5 V/\mu s$,	25°C		0.4	1	
۲	Kise unie	See Figures 2 and 3	–40°C to 85°C			1	μs
+.	Foll time	See Figures 2 and 2	25°C		0.05	1	
⁴		See Figures 2 and 5	–40°C to 85°C			1	μs
• • • •	Minimum pulse duration at V_{CC} for output		25°C			5	
w(min)	response		–40°C to 85°C			5	μs

PARAMETER MEASUREMENT INFORMATION

NOTE A: Includes jig and probe capacitance

Figure 2. Test Circuit for RESET Output Switching Characteristics

Figure 3. Switching Diagram

TL7757 SUPPLY-VOLTAGE SUPERVISOR AND PRECISION VOLTAGE DETECTOR

SLVS041H - SEPTEMBER 1991 - REVISED AUGUST 2002

TYPICAL CHARACTERISTICS[†]

		FIGURE
VCC	Supply voltage vs RESET output voltage	4
ICC	Supply current vs Supply voltage	5
ICC	Supply current vs Free-air temperature	6
V _{OL}	Low-level output voltage vs Low-level output current	7
VOL	Low-level output voltage vs Free-air temperature	8
IOL	Output current vs Supply voltage	9
V _{IT} -	Input threshold voltage (negative-going V_{CC}) vs Free-air temperature	10
V _{res}	Power-up reset voltage vs Free-air temperature	11
V _{res}	Power-up reset voltage and supply voltage vs Time	12
	Propagation delay time	13

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS[†]

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TL7757 SUPPLY-VOLTAGE SUPERVISOR AND PRECISION VOLTAGE DETECTOR SLVS041H – SEPTEMBER 1991 – REVISED AUGUST 2002

TYPICAL CHARACTERISTICS[†]

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TL7757 SUPPLY-VOLTAGE SUPERVISOR AND PRECISION VOLTAGE DETECTOR SLVS041H – SEPTEMBER 1991 – REVISED AUGUST 2002

APPLICATION INFORMATION

TYPICAL APPLICATION DIAGRAM

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated