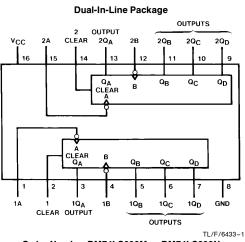
National Semiconductor

DM74LS390 Dual 4-Bit Decade Counter


General Description

Each of these monolithic circuits contains eight masterslave flip-flops and additional gating to implement two individual four-bit counters in a single package. The 'LS390 incorporates dual divide-by-two and divide-by-five counters, which can be used to implement cycle lengths equal to any whole and/or cumulative multiples of 2 and/or 5 up to divide-by-100. When connected as a bi-quinary counter, the separate divide-by-two circuit can be used to provide symmetry (a square wave) at the final output stage. The 'LS390 has parallel outputs from each counter stage so that any submultiple of the input count frequency is available for system-timing signals.

Features

- Dual version of the popular 'LS90
- 'LS390 ... individual clocks for A and B flip-flops provide dual ÷ 2 and ÷ 5 counters
- Direct clear for each 4-bit counter
- Dual 4-bit version can significantly improve system densities by reducing counter package count by 50%
- Typical maximum count frequency 35 MHz
- Buffered outputs reduce possibility of collector commutation

Connection Diagram

Order Number DM74LS390M or DM74LS390N See NS Package Number M16A or N16E

Function Tables

BCD Count Sequence (Each Counter) (See Note A)								
Count	Outputs							
oount	Q_D	Q_C	Q_B	$\mathbf{Q}_{\mathbf{A}}$				
0	L	L	L	L				
1	L	L	L	н				
2	L	L	Н	L				
3	L	L	н	н				
4	L	н	L	L				
5	L	Н	L	Н				
6	L	н	н	L				
7	L	Н	Н	н				
8	н	L	L	L				
9	н	L	L	Н				

Bi-Quinary (5-2) (Each Counter) (See Note B)

	(566	NOLE	D)					
Count		Outputs						
	Q_A	$\mathbf{Q}_{\mathbf{D}}$	Q_{C}	QB				
0	L	L	L	L				
1	L	L	L	Н				
2	L	L	Н	L				
2 3	L	L	Н	Н				
4 5	L	Н	L	L				
5	н	L	L	L				
6	н	L	L	Н				
7	н	L	Н	L				
8	н	L	Н	Н				
9	н	н	L	L				

Note A: Output Q_A is connected to input B for BCD count. Note B: Output Q_D is connected to input A for Bi-quinary count. Note C: H = High Level, L = Low Level.

©1995 National Semiconductor Corporation TL/F/6433

RRD-B30M105/Printed in U. S. A.

DM74LS390 Dual 4-Bit Decade Counter

June 1989

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	
Clear	7V
A or B	5.5V
Operating Free Air Temperature Range)
DM74LS	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter			DM74LS390				
Symbol	Faramete	Falameter			Max	Units		
V _{CC}	Supply Voltage		4.75	5	5.25	V		
VIH	High Level Input Voltage		2			V		
V _{IL}	Low Level Input Voltage				0.8	V		
I _{OH}	High Level Output Current				-0.4	mA		
I _{OL}	Low Level Output Current				8	mA		
f _{CLK}	Clock Frequency (Note 1)	A to Q _A	0		25	MHz		
		B to QB	0		20			
f _{CLK}	Clock Frequency (Note 2)	A to Q _A	0		20	MHz		
		B to QB	0		15			
t _W	Pulse Width (Note 1)	А	20					
		В	25			ns		
		Clear High	20]		
t _{REL}	Clear Release Time (Notes 3 & 4)		25↓			ns		
T _A	Free Air Operating Temperatu	ire	0		70	°C		

Note 1: C_L = 15 pF, R_L = 2 k $\Omega,\,T_A$ = 25°C and V_{CC} = 5V.

Note 2: $C_L = 50$ pF, $R_L = 2 k\Omega$, $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

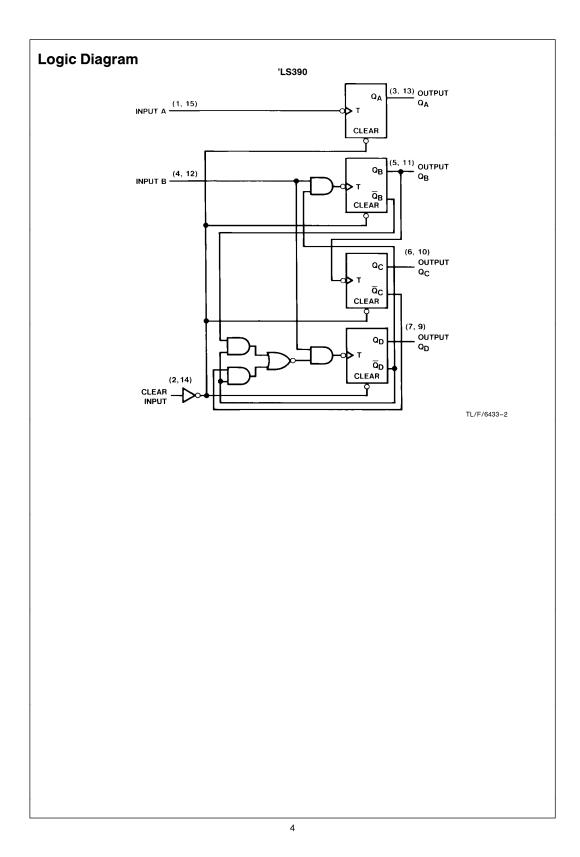
Note 3: The symbol (\downarrow) indicates the falling edge of the clear pulse is used for reference.

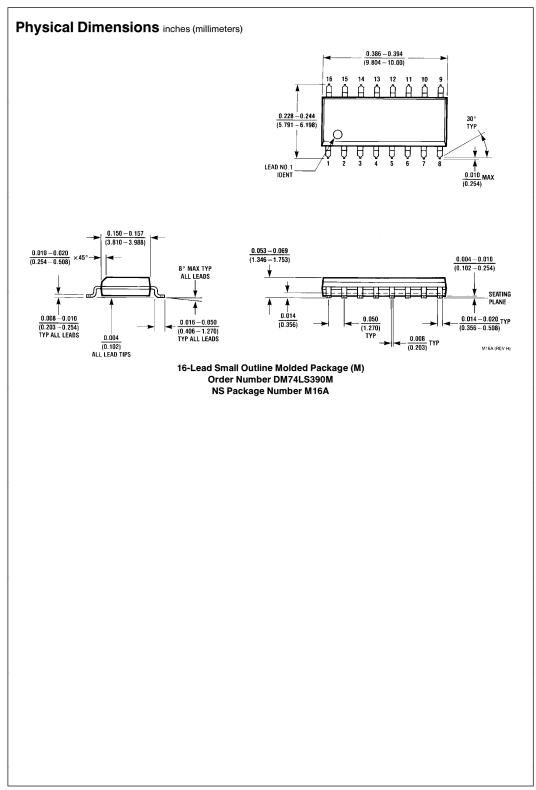
Note 4: $T_{A}\,=\,25^{\circ}C$ and $V_{CC}\,=\,5V.$

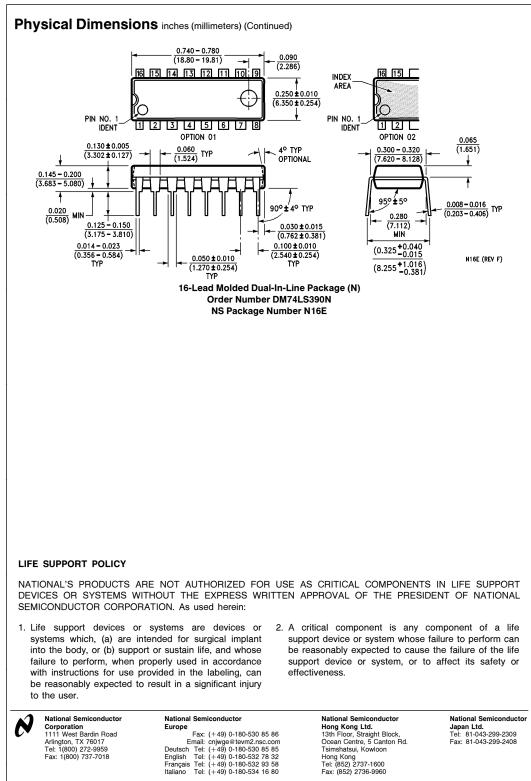
Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Мах	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	High Level Output Voltage	$\label{eq:V_CC} \begin{array}{l} V_{CC} = Min, I_{OH} = Max \\ V_{IL} = Max, V_{IH} = Min \end{array}$		2.7	3.4		v
V _{OL} Low Level Output Voltage		$\label{eq:V_CC} \begin{array}{l} V_{CC} = Min, I_{OL} = Max \\ V_{IL} = Max, V_{IH} = Min \end{array}$		0.35		0.5	v
		$I_{OL} = 4 \text{ mA}, V_{CC} = Min$		0.25	0.4		
II Input Curren	Input Current @ Max	$V_{CC} = Max, V_I = 7V$	Clear			0.1	mA
	Input Voltage V _{CC} = Max	00	А			0.2	
		$V_{I} = 5.5V$	В			0.4	
I _{IH} High Level Input Current	High Level Input	V _{CC} = Max	Clear			20	
	Current $V_1 = 2.7V$	$V_{I} = 2.7V$	А			40	μΑ
		В			80]	

	cal Characteris	tics air temperature range (unless o	therwise not	ed) (Contin	ued)		
Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
I _{IL} Low Level Input Current	Low Level Input $V_{CC} = Max, V_I = 0.4V$	Clear			-0.4		
		А			-1.6	mA	
			В			-2.4	
I _{OS}	Short Circuit Output Current	V _{CC} = Max (Note 2)	DM74	-20		-100	mA
Icc	Supply Current	V _{CC} = Max (Note 3)			15	26	mA


Note 1: All typicals are at $V_{CC}\,=\,5V,\,T_{A}\,=\,25^{\circ}C.$


Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.


Note 3: I_{CC} is measured with all outputs open, both CLEAR inputs grounded following momentary connection to 4.5 and all other inputs grounded.

Switching Characteristics at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$R_L = 2 k\Omega$				
			$C_L = 15 pF$		C _L = 50 pF		Units
			Min	Max	Min	Мах	
f _{MAX}	Maximum Clock	A to Q _A	25		20		MHz
	Frequency	B to Q _B	20		15		
t _{PLH}	Propagation Delay Time Low to High Level Output	A to Q _A		20		24	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	A to Q _A		20		30	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	A to Q _C		60		81	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	A to Q _C		60		81	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	B to Q _B		21		27	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	B to Q _B		21		33	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	B to Q _C		39		51	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	B to Q _C		39		54	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	B to Q _D		21		27	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	B to Q _D		21		33	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Clear to Any Q		39		45	ns

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications