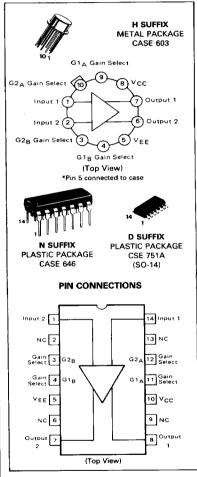
MOTOROLA SEMICONDUCTOR TECHNICAL DATA

NE592 SE592

DIFFERENTIAL TWO STAGE VIDEO AMPLIFIER


The SE/NE592 is a monolithic, two stage, differential output, wideband video amplifier. It offers fixed gains of 100 and 400 without external components and adjustable gains from 400 to 0 withone external resistor. The input stage has been designed so that with the addition of a few external reactive elements between the gain select terminals, the circuit can function as a high pass, low pass, or band pass filter. This feature makes the circuit ideal for use as a video or pulse amplifier in communications, magnetic memories, display and video recorder systems. The 592 is a pin-for-pin replacement for the MC1733.

- 90 MHz Bandwidth
- Adjustable Gains From 0 to 400
- · Adjustable Pass Band
- No Frequency Compensation Required

CIRCUIT SCHEMATIC ٧cc Output 1 Input 2 O Output 2 Input 1 O-G1A 0-G18 O-50 **≨**50 G2 A O-G2BO-300 400 **≥** 400 \$₆₀₀ 600 VEE

VIDEO AMPLIFIER

SILICON MONOLITHIC INTEGRATED CIRCUIT

ORDERING INFORMATION

Device	Temperature Range	Package
NE592D NE592N	0 to 70°C	SO-14 Plastic DIP
NE592H		Metal Can
SE592H	-55 to +125°C	Metal Can

NE592, SE592

MAXIMUM RATINGS (TA = +25°C unless otherwise noted)

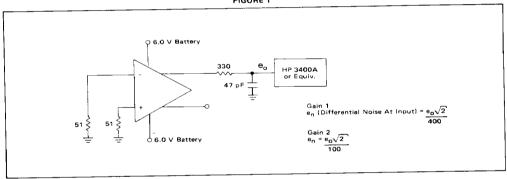
Rating	Symbol	Value	Unit	
Power Supply Voltage	V _{CC} V _{EE}	+8.0	Volts	
Differential Input Voltages	V _{ID}	±5.0	Volts	
Common-Mode Input Voltage	V _{IC}	+6.0	Volts	
Output Current	10	10	mA	
Operating Ambient Temperature Range SE592 NE592	TA	-55 to +125 0 to +70	οС	
Operating Junction Temperature Range Metal and Ceramic Packages Plastic Package	ŤJ	175 150	°C	
Storage Temperature Range Metal and Ceramic Packagee Plastic Package	T _{stg}	-65 to +150 -55 to +125	°C	

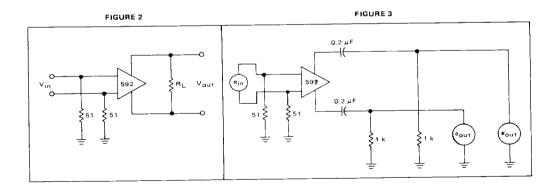
ELECTRICAL CHARACTERISTICS T_A = 25°C unless otherwise noted. $(V_{CC} = +6.0 \text{ V}, V_{EE} = -6.0 \text{ V}, V_{CM} = 0)$

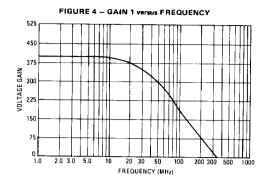
Characteristic Differential Voltage Gain — Figure 3 (R _L = 2 kΩ, e _{out} = 3 Vp-p) (Gain 1, Note 1) (Gain 2, Note 2) Bandwidth — Figure 3 (Gain 1, Note 1) (Gain 1, Note 2) Rise Time — Figure 3 (Gain 1, e _{out} = 1 Vp-p, Note 1) (Gain 2, e _{out} = 1 Vp-p, Note 2) Propagation Delay — Figure 3 (Gain 1, e _{out} = 1 Vp-p, Note 1) (Gain 2, e _{out} = 1 Vp-p, Note 1) (Gain 1, e _{out} = 1 Vp-p, Note 2)	Symbol Avd BW ITLH ITHL PHH PHL Rin	300 90	400 100 40 90 10.5 4.5	500 110 - - 10	250 80	400 100 40 90 10.5 4.5	600 120	Units V/V MHz
(R _L = 2 kΩ, e _{out} = 3 Vp-p) (Gain 1, Note 1) (Gain 2, Note 2) Bandwidth — Figure 3 (Gain 1, Note 1) (Gain 1, Note 2) Rise Time — Figure 3 (Gein 1, e _{out} = 1 Vp-p, Note 1) (Gain 2, e _{out} = 1 Vp-p, Note 2) Propagation Delay — Figure 3 (Gain 1, e _{out} = 1 Vp-p, Note 1) (Gain 2, e _{out} = 1 Vp-p, Note 1)	TTLH TTHL TPLH TPHL	90	100 40 90 10.5 4.5	110 - -	80	400 100 40 90	600 120	V/V MHz
(Gain 1, Note 1) (Gain 2, Note 2) Bandwidth — Figure 3 (Gain 1, Note 1) (Gain 1, Note 2) Rise Time — Figure 3 (Gain 1, e _{out} = 1 Vp-p, Note 1) (Gain 2, e _{out} = 1 Vp-p, Note 2) Propagation Delay — Figure 3 (Gain 1, e _{out} = 1 Vp-p, Note 1) (Gain 2, e _{out} = 1 Vp-p, Note 1) (Gain 2, e _{out} = 1 Vp-p, Note 2)	ttlh tthl tplh tphl	90	100 40 90 10.5 4.5	110 - -	80	40 90	120 - - -	MHz
(Gain 2, Note 2) Bandwidth — Figure 3 (Gain 1, Note 1) (Gain 1, Note 2) Rise Time — Figure 3 (Gain 1, e _{out} ≈ 1 Vp-p, Note 1) (Gain 2, e _{out} ≈ 1 Vp-p, Note 2) Propagation Delay — Figure 3 (Gain 1, e _{out} ≈ 1 Vp-p, Note 1) (Gain 2, e _{out} ≈ 1 Vp-p, Note 2)	ttlh tthl tplh tphl	90	100 40 90 10.5 4.5	110 - -	80	40 90	120 - - -	
Bandwidth — Figure 3 (Gain 1, Note 1) (Gain 1, Note 2) Rise Time — Figure 3 (Gein 1, e _{out} = 1 Vp-p, Note 1) (Gain 2, e _{out} = 1 Vp-p, Note 2) Propagation Delay — Figure 3 (Gain 1, e _{out} = 1 Vp-p, Note 1) (Gain 2, e _{out} = 1 Vp-p, Note 2)	ttlh tthl tplh tphl	_	40 90 10.5 4.5		-	40 90 10.5	-	
(Gain 1, Note 1) (Gain 1, Note 2) Rise Time — Figure 3 (Gein 1, eout = 1 Vp-p, Note 1) (Gain 2, eout = 1 Vp-p, Note 2) Propagation Delay — Figure 3 (Gain 1, eout = 1 Vp-p, Note 1) (Gain 2, eout = 1 Vp-p, Note 2)	ttlh tthl tplh tphl		90 10.5 4.5	_	-	90	-	
(Gain 1, Note 2) Rise Time — Figure 3 (Gain 1, e _{Out} = 1 Vp-p, Note 1) (Gain 2, e _{Out} = 1 Vp-p, Note 2) Propagation Delay — Figure 3 (Gain 1, e _{Out} = 1 Vp-p, Note 1) (Gain 2, e _{Out} = 1 Vp-p, Note 2)	tPLH tPHL	-	90 10.5 4.5	_	-	90	_	
Rise Time — Figure 3 (Gain 1, e _{out} ≈ 1 Vp-p, Note 1) (Gain 2, e _{out} = 1 Vp-p, Note 2) Propagation Delay — Figure 3 (Gain 1, e _{out} = 1 Vp-p, Note 1) (Gain 2, e _{out} = 1 Vp-p, Note 2)	tPLH tPHL	-	10.5 4.5	_	-	90	_	ns
(Gain 1, e _{out} ≈ 1 Vp-p, Note 1) (Gain 2, e _{out} = 1 Vp-p, Note 2) Propagation Delay — Figure 3 (Gain 1, e _{out} = 1 Vp-p, Note 1) (Gain 2, e _{out} = 1 Vp-p, Note 2)	tPLH tPHL	- - -	4.5	1	-	10.5	_	ns
(Gain 2, e _{Out} = 1 Vp-p, Note 2) Propagation Delay Figure 3 (Gain 1, e _{Out} = 1 Vp-p, Note 1) (Gain 2, e _{Out} = 1 Vp-p, Note 2)	tPLH tPHL	_ _ _	4.5	1	-		- 12	ns
Propagation Delay — Figure 3 (Gain 1, e _{out} = 1 Vp.p, Note 1) (Gain 2, e _{out} = 1 Vp.p, Note 2)	tPLH tPHL		4.5	1	-		12	
(Gain 1, e _{out} = 1 Vp-p, Note 1) (Gain 2, e _{out} = 1 Vp-p, Note 2)	tPLH tPHL	-	7.5				12	1
(Gain 2, e _{out} = 1 Vp-p, Note 2)	^t PHL	-	7.5	1		1		1
	^t PHL	_				7.5		ns
			6.0	10	_	6.0	10	
nput Resistance	1 ""					0.0	10	ļ
(Gain 1, Note 1)	I		4.0		_	4.0	1	kΩ
(Gain 2, Note 2)	ļ	20	30	_	10	30	_	
nput Capacitance					- 10	30	 	├
(Gain 2, Note 2)	Cin		2.0	_	l –	2.0		_
nput Offset Current (Gain 3, Note 3) - Fig. 2	10	~	0.4	3.0		0.4	5.0	pF
nput Bias Current (Gain 3, Note 3) - Fig. 2	11B		9.0	20		9.0	30	μA
nput Noise Voltage (Gain 1 and Gain 2)	V _n		12			12		μА
(BW = 1 kHz to 10 MHz) Figure 1	"		'-	_		12	-	μV(rms)
nput Voltage Range (Gain 2, Note 2)- Fig. 3	Vin	± 1.0			±1.0		_	
Common-Mode Rejection Ratio - Figure 3	CMRR							
(Gain 2, V _{CM} = ±1 V, f≤ 100 kHz)		60	86	_	60	86]	d₿
(Gain 2, $V_{CM} = \pm 1 \text{ V, f} = 5 \text{ MHz}$)		_	60		_	60	_	
upply Voltage Rejection Ratio - Figure 2	PSRR					- 00		
(Gain 2, $\Delta V_s = \pm 0.5 V$)		50	70	_ i	50	70	_	dB
output Offset Voltage - Figure 2	v ₀₀						<u> </u>	
(Gain 3, R _L = ∞ , Note 3)	- 00	_	0.35	0.75	_	0.35	0.75	V
utput Common-Mode Voltage - Figure 2	Vсмо		-			0.33	0.75	<u> </u>
(R L = ∞, Gain 3, Note 3)	CIVIO	2.4	2.9	3.4	2.4	2.9	2.	V
utput Voltage Swing - Figure 3	v _o			0.7	2.7	2.9	3.4	
(RL = 2k, Gain 2, Note 2)	-0	3.0	4.0	_	3.0	4.0		Vp-p
utput Resistance	ro		20					
ower Supply Current - Figure 2	I _D					20	_	Ω
(R _L = ∞, Gain 2, Note 2)	٠.	_ 1	18	24	_	18	24	mA

Note 1. Gain select pins $G1_{\mbox{\scriptsize A}}$ and $G1_{\mbox{\scriptsize B}}$ connected together.

Note 2. Gain select pins G2_A and G2_B connected together.


Note 3. All gain select pins open.


ELECTRICAL CHARACTERISTICS T_A = T_{high} to T_{low} unless otherwise noted.* (V_{CC} = +6.0 Vdc, V_{EE} = -6.0 Vdc, V_{CM} = 0)


	SE592				NE592			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Units
Differential Voltage Gain - Figure 3	Avd							V/V
(R _L = 2 kΩ, e _{Out} = 3 Vp·p) (Gain 1, Note 1) (Gain 2, Note 2)		200 80		600 120	250 80	-	600 120	
Input Resistance (Gain 2)	Rin	8.0			8.0		-	kΩ
Input Offset Current (Gain 3) - Figure 2	l _{IO}	_	-	5.0	-		6.0	μΑ
Input Bias Current (Gain 3) - Figure 2	IIB	_		40	-	<u> </u>	40	μA
Input Voltage Range (Gain 2) - Figure 3	Vin	±1.0	-	_	±1.0	_	-	V
Common-Mode Rejection Ratio - Figure 3 (Gain 2, V _{CM} = ±1 V, f ≤ 100 kHz)	CMRR	50	-	-	50		_	dB
Supply Voltage Rejection Ratio — Figure 2 (Gain 2, \(\Delta \ \ \mathbb{V}_S = \pm 0.5 \ \mathbb{V} \)	PSRR	50	<u> </u>		50	_	_	dB
Output Offset Voltage (Gain 3) - Figure 2	V00		_	1.2	Ī <u> </u>		1.5	V
Output Voltage Swing (Gain 2) — Figure 3	Vo	2.5	-	_	2.5			Vp-p
Power Supply Current (Gain 2) - Figure 2	I _D	-	T -	27		I -	27	mA

^{*}T_{low} = 0°C for NE592, -55°C for SE592 T_{high} = +70°C for NE592, +125°C for SE592

GENERAL TEST CIRCUITS FIGURE 1

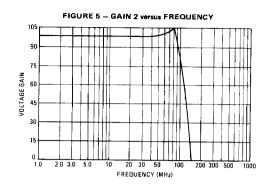


FIGURE 6 – OUTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY

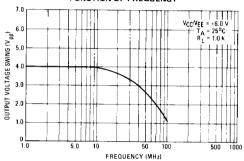


FIGURE 7 — OUTPUT VOLTAGE SWING AS A FUNCTION OF LOAD RESISTANCE

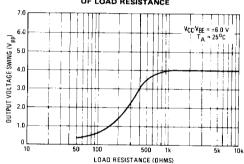
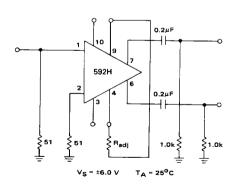
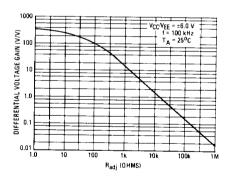
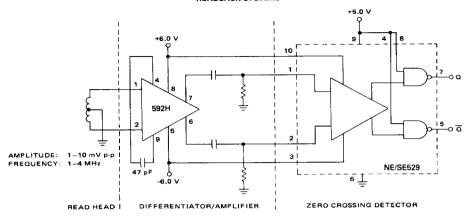





FIGURE 8 - VOLTAGE GAIN AS A FUNCTION OF $R_{\mbox{\scriptsize adj}}$ RESISTANCE

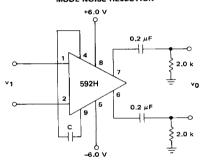


FIGURE 9 – DISK/TAPE PHASE MODULATED READBACK SYSTEMS

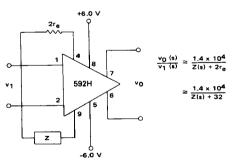


FIGURE 10 — DIFFERENTIATION WITH HIGH COMMON MODE NOISE REJECTION

FOR FREQUENCY $f_1 << 1/2 \pi (32) C$ $v_0 \approx 1.4 \times 10^4 C \frac{d_{v_1}}{dt}$

FIGURE 11 - FILTER NETWORKS

BAS	C CONFIGUR	ATION
Z NETWORK	FILTER TYPE	VO (s) TRANSFER V1 (s) FUNCTION
٥-١٠٠٠	Low Pass	$\frac{1.4 \times 10^4}{L} \left[\frac{1}{s + R/L} \right]$
0-vii	High Pass	1.4 × 10 ⁴
	Band Pass	$\frac{1.4 \times 10^4}{L} \left[\frac{s}{s^2 + R/L s + 1/LC} \right]$
	Band Reject	$\frac{1.4 \times 10^4}{R} \left[\frac{s^2 + 1/LC}{s^2 + 1/LC + s/RC} \right]$

NOTE: In the networks above, the R value used is assumed to include 2 $r_{\rm g}$, or approximately 30 Ohms.